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1. INTRODUCTION

This paper is a sequel to [4] which was concerned with the problem of
approximating a prescribed function fE C[a,b] in the uniform norm by
Tchebycheffian Spline Functions (TSF's) with free knots. For convenience,
we repeat the definition of this class of splines. Let {Wi(t)}On be n + 1 positive
functions on [a,b] with Wi E cn-i, i = 0, 1, . .. ,n, and let {Ui(t)}On be the associ­
ated Extended Complete Tchebycheff (ECT) system generated by the weights
{Wi}, Le.,

J
t Jgl Jgi-I

Ui(t) = WO(t) a WI(gl) a Wlg2)'" a WMi) dgi .·· dg/>

(cf. [2,3,4,5]). Denote by 1Tn the class of u-polynomials L1~o aiult). We are
interested in approximating continuous functions by functions of the class

:7n,k = {s(t) I there exist a = Xo < Xl < .,. < Xr+l = b and integers m/>, .. ,
mrwith 1 .;;; mi';;; n + 1 and L~~l mi = k, such that set) E 1Tnin each of the
intervals (Xi,Xi+I) while s E c n-mi in an open neighborhood of Xi'
1 .;;; i.;;; r} (1.2)

ofTSF's of degree n with some k knots (counting multiplicities) in [a,b]. Here
we recall that a spline s of degree n is said to have a knot of multiplicity m at
the point X if s E cn- m in an open neighborhood of X but s is in no higher
continuity class there.

The class :7n, k consists precisely of the functions

n r mi

set) = L biui(t) + L L Cu if1n-i+l(t; Xi),
i~O i~l i-I

where for °.;;; 1.;;; n,

r

L mi=k,
i~l

(1.3)

t<X.

(1.4)

When wi(t)"",i, i=1,2, .. "n, and Wo(t) =1, then {Ui(t)}On become {ti}on,
if11(t;X) = (t-x)/, and the class :7n,k reduces to the set of all polynomial
splines of degree n with some k knots, counting multiplicity,
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In [4], it was shown that :J7n, k is a reasonable class of splines to consider for
the purpose of uniform approximation. In particular, it was shown that for
every prescribedfE C[a,bJ there exists a best approximation s* E :J7n ,k offin
the uniform norm:

Ils* - fll", = max Is*(t) - f(t)J = min lis - flloo.
a ~t ;;5;b SE.!?n.k

As examples quoted in [4J and [5] show, a prescribedfE C[a,b] need not have
a unique best approximation, and since the class :J7n ,k allows for splines with
multiplicity n + 1, f may even possess discontinuous best approximations
:J7n,k' In order to facilitate the discussion of uniqueness and characterization
properties of best approximations, the following stronger existence theorem
was also obtained in [4].

THEOREM 1.1. Let fE C [a, bJ and n?> 1. Then there exists a best uniform
approximation offin :J7n ,k which is also in C[a,b].

The purpose of this paper is to investigate further the smoothness properties
of best approximating splines in :J7n ,k' Specifically, we shall show that
n?> 2 and fE C1[a,b], then f possesses a best approximation in :J7n, k (k an
arbitrary nonnegative integer) which is also of class C 1 [a, b]. On the other
hand, if n, k, p are integers with p ?> Z, k > n - p ?> 0, there exists a function
fE C"'[a,b] which possess no best approximation in :J7n ,k of continuity class
CP[a,b] (see Theorem 3.8). This negative result is somewhat unexpected, in
view ofthe positive results in the preservation ofcontinuity and differentiability
off

2. EXISTENCE OF BEST ApPROXIMAnONS IN :J7n,k WHICH ARE C I [a, b]

This section is devoted to the following analog of Theorem U.

THEOREM 2.1. Let n?> 2 and k?> 0 be integers, and supposefE CI[a,b). Then
there exists a best approximation offin :J7n, k which is also in CI[a,b].

Proof Suppose s E :J7n , k is a best approximation off One exists by Theorem
1.1, and, moreover, we may even assume it is continuous; i.e., it has no knots
of multiplicity n + 1. Now, ifs also exhibits no knots of multiplicity n, then it is
a priori of class CI[a,bJ and there is nothing to prove. Thus, we consider
henceforth only the case where s possesses n-tuple knots at some points in [a,
Restricting our attention to just one such point z E (a,b), we may assume
set) has the representation (cf. (1.3»

n

s(t)=p(t) + L al<PI(t;Z),
1=1

P E 1Tn,
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for t in a small neighborhood of z. By a trivial change of variables we may also
assume Z= O.

To establish the existence of a best approximation offin !/n,k which is in
C 1 [a, b], we shall replace s locally by a spline

n

s(t) = p(t) + Aepn(t; x I) + 2: Ai epi(t; 0) + BepnCt; X2) (2.2)
i~3

with XI < 0 < X2 and X2 - XI arbitrarily small. We intend to accomplish this in
such a way that set) =:s(t) for t ¢ [XI,X2] and so that set) also provides a best
approximation offin !/n,k' The first requirement leads to the equation

n n

s(t) - s(t) = 2: ai epi(t; 0) - AepnCt; X I) - 2: Ai epi(t; 0) - BepnCt; X2) =: 0, (2.3)
i=1 i=3

for t> X2. We now need the following:

LEMMA 2.2. For t > max (0, x),

r-I

ep,(t;x) = epr(t;O) + 2: lXir; x) ep/t; 0),
i~O

Proof For t> max(O,x),

Similarly,

Repeating this process clearly leads to the desired expansion, and the proof
of Lemma 2.2 is complete.
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Substituting from Lemma 2.2 in (2.3), we obtain the equation (!Xn == 1)

n n n

2: aieMt;O)- A 2: !Xi(n;xI)eMt;O)- 2: A;cPt(t;O)
i=l i~O i~3

n

- B 2: !Xi(n;x2)eMt;0) == 0,
i~O

(2.4)

Since the {eMt; O)}on are known to be linearly independent (see e.g., [2]), (2.4) is
equivalent to the equations

A!Xo + Bf30 = °
A!XI +Bf31 = al

A!X2 + Bf32 = a2

Ai + A!X; + Bf3i = ai

"1
I

I
l

i = 3,4, ... , n, J

(2.5)

where for convenience we have written !Xi = !XtCn; Xl) and f3i = !X,(n; Xl), for
i = 0, l,.,., n. We claim this system of equations can be satisfied with
Xl < °< X2 and X2 - Xl arbitrarily small. To see this, we first notice that for
Xl < 0 < X2, !Xi and f3; satisfy the easily verifiable properties

!Xi >0.

(_1)n-i f3i > 0,

i=O,l, .. "n,

(2.6)

This assures that !X0f31 - !Xl f30 # °for all choices of Xl < 0< X2' Thus, the
first two equations of (2.5) can be solved for any Xl < °< X2 and yield

A - alf30 B G1!XO _- ~- (2.7)
!Xlf30-!X0f3I' et0f3I-f30!XI'

Substituting in the third equation of (2.5), we see that it will be satisfied if and
only if

I( )
!i f30 !X2 - eto f32 a2

Xl,X2 - P
!Xl fJO - !X0f31 a j

Straightforward application of L'Hospital's rule shows that !X2/!XO' !Xdao and
!X2/!XI all approach +co as Xl to, while f32/f3o --+ +co, and f3df3o, f32/f31 --+ -co as
X2~0. Hence, for arbitrary E > 0, if X2 = E, then

Similarly, if Xl = -E, then I(xbx2) --+ -00 as X2~O. We conclude that Jot
arbitrarily large K> 0 there exist -E .;; i\ < 0 < X2 .;; E such that l(x!> E) = K,
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I(-E,x2) = -K. Since I(xl>x2) is continuous in Xl and X2, this implies there
exists a point (Xl>X2) on the line joining (-E,X2) and (Xl> E), with the property
I(xl>x2) = a2lal' For this choice of -E";;; Xl < 0 < X2";;; E, the first three
equations of (2.5) are satisfied. The remaining equations of (2.5) are then
solved trivially by choosing Ai = ai - AlXi - Bf3;, i = 3, 4, ..., n.

We have now succeeded in constructing set) which agrees identically with
set) for t 1: [Xl>X2]' Clearly, s E Y n, k since the n-tuple knot at 0 of s has been
split into two simple (order 1) knots at Xl and X2 and an n-2-tuple knot at O.
Moreover, set) is now ofclass C 2 near 0 by construction. To complete the proof
of Theorem 2.1, it remains only to verify that sis still a best approximation of
fin Yn,k'

We consider only the case where al in (2.1) is positive (the case al < 0 is
analogous). First we notice that

s(O) - f(O) < Bn,k = min Ilf - sit",. (2.8)
seSl'n,k

Indeed, suppose this is not the case; i.e., s(O) - f(O) = Bn k' Then (s - f)' (0-) =
(p - f)' (0) > 0 and for small t> 0,

[set) - f(t)] = [s(O) - f(O)] + [s'(O) - f'(O)] t +0(t2)

= Bn. k+ [al 'wo(O) WI (0) + p'(O) -1'(0)] t + 0(t 2
)

> Bn,k'
(Note: 4>;'(t;O)lo=O for i> 1 while 4>I'(t;O)lo= WO(O)WI(O).) This contra­
diction implies (2.8). Now, by (2.6) and (2.7),

A = alf30 > O.
1X1f30 - 1X0f31

Since set) - set) = A4>nCt;XI) for Xl";;; t,,;;; 0, it follows that set) > set) for
Xl < t,,;;; O. Moreover, since set) - set) is continuous and

set) - set) = -Bwo(t) Jt WI(gl)'" Jfn-l WnCgn) dgn... dgl for 0 < t,,;;; X2,
X2 X2

we conclude that set) - set) > 0 for Xl < t < X2' In addition, for Xl ,,;;; t ,,;;; X2,

l(s-s)(x)l,,;;; IAI4>nC0;XI) = a174>n(0;;I) -+0 aSX2-XI-+0,
IXI 0 - 1X0 I

as can be verified by another simple application ofL'Hospital's rule. Combin­
ing these facts, we see that by taking X2 - Xl sufficiently small we can assure
that set) is also a best approximation offin Yn,l"

3. NEGATIVE RESULTS

We begin this section with an example which illustrates that f cannot be
expected to possess best approximations in Yn,k for k > n - p ~ 0 which are
CP[a,b], unlessfE CP[a,b] itself.
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EXAMPLE 3.1. Consider approximating f(t) = fp(t;O) by splines of class
Y n• k , k>n-p,?:O. The function f is in Y n• n- p +! n CP- 1[-I,l], but
f~ C P [-1, 1]. Clearly, a best approximation off in Y n• k is f itself, and it is
unique. Sincef~ CP[-l, 1], it follows thatf cannot possess a best approxi­
mation in Y n•k which is CP[-l, 1].

The remainder of our negative results are based on the following example.

EXAMPLE 3.2. For 1 <,p <, n, let set) = fP{t;O) on [-1,1], and construct
fE Coo[-I, 1] such that (f- s)(t) achieves ±I with alternating sign at n + 2
points, in each of the interiors of the intervals

[
i i + 1]

Ii = 4n' 4n ' i= -4n,-4n + 1, .. .,4n - 1.

Consider approximatingfby splines in Y n• n-p+!' Sincef- s alternates at least
(n+2)8n-I;,;;,n+2(n-p+ 1)+ 1 times on [-1,1], Theorem 4.2 of [4]
assures that s is the best approximation offin Y n• n-p+!'

In addition, sincef - s alternates n +2 times on each of the intervals Ii and
s is a u-polynomial there, s restricted to Ii must be the unique best approxima­
tion tofby (generalized) polynomials in Trn on Ii'

The usefulness of Example 3.2 is embodied in the fact that we can establish
a connection between the existence of smooth best approximations tof and the
existence of confined splines; that is splines with bounded support. Indeed,
supposefpossesses a best approximation &E Y". n-p+! whichis also Cpr-I,
Since s ~ CP[-l, 1], s¢,s. Clearly, there must be intervals among the Ii, both
to the left and to the right of [-1/4n, 1/4n], in which no knot of &appears, no
matter how the n - p + 1 knots of&are distributed in the 8n intervals Ii' But on
intervals Ii where &exhibits no knots, &must reduce to the unique best approxi­
mation on II off in Tr" (since Ilf - &11 = Ilf - sll by assumption, while s was
already seen to be the best approximation in 1T" on II)' Hence we conclude that
the spline J = s - s is a confined spline of degree n with at most 2(n - p + 1)
knots.

In [1], confined splines with simple knots were discussed. We need the
following slight extension of a lemma from [1].

LEMMA 3.3. Let set) E C(lY n, m (the class of confined splines of degree n with
some m knots, counting multiplicities). Then s¢.O only ifm ;,;;, n + 2.

Proof Let the knots of s E C(lY n• m be XI' with multiplicity m i , i = 1,2, . .. ,1',
where 2~=1 ml = m. Writing multiple knots repeatedly, according to their
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multiplicity, we may also write these as YI <; Yz <; ... <; Ym' Since set) == 0 for
t ~ Ym, there exist Ym < tl < tz < ... < tmwith

r mi

S(tl) = L L aij epn-j+1(tI; Xi) = 0,
i~1 j~1

1= 1,2, ... ,m.

By Lemma 2.1 of [4] (cf. Theorem 1 of [3]), ifm <; n + 1, the determinant of this
system is positive, and hence aij = 0, i = 1,2, .. .,r,j = 1,2, .. .,mi.

An easy consequence of Example 3.2 and Lemma 3.3 is

LEMMA 3.4. A necessary condition in order that every f E C P willpossess a best
approximation in 9'n,n-p+I which is also in CP, is that n ~ 2p.

Proof Consider the functionf described in Example 3.2. It can only possess
a CP best approximation in 9'n, n-p+1 if there exist confined splines L1 E

~9'n, Z(n-p+1)' This is possible only if n + 2 <; 2(n - p + 1), which implies
2p<;n.

This lemma shows that the hypotheses in the positive results of Sections
1 and 2 are necessary.

We need some other intermediate results.

LEMMA 3.5. Let s E ~9'n, n+Z' Then s ¢ 0 implies set) =1= 0 for YI < t < Yn+Z,
where YI <; , .. <; Yn+Z are the knots ofs, repeated according to their multiplicity.

Proof Suppose S(tl) = 0 for some YI < tl < Yn+Z' Choose Yn+Z < tz < ...
< tn+Z' Then if XI < .,. < Xr denote the distinct knots of s

r mi

s(tl) = L L aij epn-j+1(tl; Xi) = 0,
i~l j~l

1= 1,2, ... ,n+2.

But since Yi < tz, i= 1,2, ... ,n + 2, while tl <Yn+Z, Lemma 2.1 of [4] assures
that the determinant of this system is non-zero and hen ce aij = 0, i = 1,2, .. .,r,
j= 1,2, ... ,mi •

LEMMA 3.6. There exists no confined spline of the form

r mi

s(t) = L L aiAn-j+1(t;xi)+epz(t;O)
i~1 j~1

Proof Suppose such an s exists. Since it is in C 1, Rolle's Theorem assures that
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again vanishes for t outside of [XI>Xr ] and, moreover, sl(ta = 0 for some
XI < t l < Xr • (The * on the eP's indicates that they are defined as in Section 1
but with respect to a different set of weights; here {wih ninstead of {Wi}On. The
reader who is not thoroughly familiar with TSF's and Tchebycheff systems
may think of polynomial splines, in which case, *'s are not needed here. If the
subscript I of some ePl* is negative, then we take cPl* == 0.) Thus Sj(t) is again a
confined TSF. The analysis now divides into two cases.

Case I. Suppose r = 2. Then in (x1,0) and (0, X2), Sj has no knots and can be
differentiated as often as desired. Using Rolle's Theorem, S2 = (sdwlY and
thus also S3 = (S2!W2Y will have a zero in (XI> X2), and will vanish for t 1: [XI' X2].
Since

r mi

S3(t) = 2: 2: aijeP:-j-2(t;X;)
i~l j~1

for all t E (XI>X2), we see thats3(t) E rt'.9:_ 3, n-l and has a zero also in (Xj,X2)'
By Lemma 3.5, this is impossible unless S3 == 0.

Case II. Suppose r> 3. Then m i <, n - 3; so SI is of class C 2 on (x1,0) and
(0, X2)' Thus it can be differentiated twice in (x I> 0) and (0, X2), and this leads
again to an S3(t) which vanishes identically.

In either case, s(t) reduces to eP2(t; 0) which is clearly not a confined spline,
and this contradiction proves the lemma.

THEOREM 3.7. For any n ~ 3 there exists afunctionfE cooL-I, 1] such
.fhas no C 2 [-I, 1] best approximations in .9n , 11-1-

Proof Consider the functionf(x) E cooL-I, 1] constructed in Example 3.2
(with p = 2), whose best approximation in .9n, n-l is s = eP2(t;O). Clearly
SEC 1[-1,1], but by the remarks following Example 3.2,1 can possess a C 2

best approximation only if there exists a confined spline of the form

gE .9n,I1-1'

By Lemma 3.3, this requires n > 4, since Ll E C(f YI1, 211-2' On the other hand,
for n ~ 4, Lemma 3.6 shows that there cannot exist confined splines of the
form (3.7).

A simple modification of the above method yields the following more com·
plete theorem.
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THEOREM 3.8. Let k, n, p be nonnegative integers.

(a) If k < n - p, then for any fE C[a,b] every best approximation offin
Y n.k belongs to CP[a,b].

(b) If p» 2 and k> n - p» 0, then there exists a function fE C"'[a,b]
which possesses no CP[a, b] best approximation in Y n,k'

Proof. Part (a) follows immediately from the definition of Y n• k • For (b)
consider set) = o/p(t;O) + Ll:::l o/n(t;i), on the interval [-I,l] where l = k­
n +p. Clearly s E Yn,k n CP-l[-I,l] while s ¢ CP[-I,l]. As in Example 3.2
constructfE C"'[-I, l] such thatf- s alternates n + 2 times on the interiors of
each of the intervals l.i = [jh,U+ I)h] forj=-N, -N+ 1, ... , N.l-I, where
h = liN, N = k + 3. By the alternation s is a best approximation offin Yn,k'
Suppose now that S E Yn,k belongs to CP[-I,l] and is also a best approxima­
tion offon [-I,l]. No matter how the knots of sare distributed, there exists
at least one of the I j in each of the intervals [-1 + h, -h], ..., [l - 1+ h, l- h]
with no knot of S. Thus (cf. Example 3.2 if.), Ll = s - s is identically zero on
these Ii> and Ll breaks into l confined splines with supports on disjoint intervals
Ai =:> [i - h, i + h], i = 0, 1, , l- 1. We claim smust have at least one knot in
each of the Ai, i = 1, 2, , l- 1. Indeed, if s has no knot in Ai, then s-
sE ~Y n, 1 on Ai which implies s == sthere in which case it does have a knot at i.
We conclude that on Aa, Ll is a confined spline of the form Ll = o/p(t; 0) +g,
g E Y n,n-p+l' Applying Rolle's theorem as in Lemma 3.6 it follows that no
such confined spline can exist. This contradiction establishes the theorem.
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