On the Smoothness of Best Spline Approximations

LARRY L. SCHUMAKER

Department of Mathematics, University of Texas, Austin, Texas 78712

1. INTRODUCTION

This paper is a sequel to [4] which was concerned with the problem of approximating a prescribed function $f \in C[a,b]$ in the uniform norm by Tchebycheffian Spline Functions (TSF's) with free knots. For convenience, we repeat the definition of this class of splines. Let $\{w_i(t)\}_0^n$ be n + 1 positive functions on [a,b] with $w_i \in C^{n-i}$, i = 0, 1, ..., n, and let $\{u_i(t)\}_0^n$ be the associated Extended Complete Tchebycheff (ECT) system generated by the weights $\{w_i\}$, i.e.,

$$u_i(t) = w_0(t) \int_a^t w_1(\xi_1) \int_a^{\xi_1} w_2(\xi_2) \dots \int_a^{\xi_{i-1}} w_i(\xi_i) d\xi_i \dots d\xi_1, \qquad (1.1)$$

(cf. [2, 3, 4, 5]). Denote by π_n the class of *u*-polynomials $\sum_{i=0}^n a_i u_i(t)$. We are interested in approximating continuous functions by functions of the class

 $\begin{aligned} \mathscr{S}_{n,k} &= \{s(t) | \text{ there exist } a = x_0 < x_1 < \ldots < x_{r+1} = b \text{ and integers } m_1, \ldots, \\ m_r \text{ with } 1 &\leq m_i \leq n+1 \text{ and } \sum_{i=1}^r m_i = k, \text{ such that } s(t) \in \pi_n \text{ in each of the intervals } (x_i, x_{i+1}) \text{ while } s \in C^{n-m_i} \text{ in an open neighborhood of } x_i, \\ 1 &\leq i \leq r \end{aligned}$

of TSF's of degree *n* with some *k* knots (counting multiplicities) in [a, b]. Here we recall that a spline *s* of degree *n* is said to have a knot of multiplicity *m* at the point *x* if $s \in C^{n-m}$ in an open neighborhood of *x* but *s* is in no higher continuity class there.

The class $\mathscr{S}_{n, k}$ consists precisely of the functions

$$s(t) = \sum_{i=0}^{n} b_{i} u_{i}(t) + \sum_{i=1}^{r} \sum_{j=1}^{m_{i}} c_{ij} \phi_{n-j+1}(t; x_{i}), \qquad \sum_{i=1}^{r} m_{i} = k, \qquad (1.3)$$

where for $0 \leq l \leq n$,

$$\phi_l(t;x) = \begin{cases} w_0(t) \int_x^t w_1(\xi_1) \dots \int_x^{\xi_{l-1}} w_l(\xi_l) d\xi_l \dots d\xi_1, & t \ge x \\ 0 & t < x. \end{cases}$$
(1.4)

When $w_i(t) \equiv i$, i = 1, 2, ..., n, and $w_0(t) \equiv 1$, then $\{u_i(t)\}_0^n$ become $\{t^i\}_0^n$, $\phi_i(t;x) = (t-x)_+^{l}$, and the class $\mathcal{S}_{n,k}$ reduces to the set of all polynomial splines of degree *n* with some *k* knots, counting multiplicity.

In [4], it was shown that $\mathscr{S}_{n,k}$ is a reasonable class of splines to consider for the purpose of uniform approximation. In particular, it was shown that for every prescribed $f \in C[a,b]$ there exists a best approximation $s^* \in \mathscr{S}_{n,k}$ of f in the uniform norm:

$$|s^* - f||_{\infty} = \max_{a \le t \le b} |s^*(t) - f(t)| = \min_{s \in \mathscr{S}_{n,k}} ||s - f||_{\infty}$$

As examples quoted in [4] and [5] show, a prescribed $f \in C[a, b]$ need not have a unique best approximation, and since the class $\mathscr{G}_{n,k}$ allows for splines with multiplicity n + 1, f may even possess discontinuous best approximations in $\mathscr{G}_{n,k}$. In order to facilitate the discussion of uniqueness and characterization properties of best approximations, the following stronger existence theorem was also obtained in [4].

THEOREM 1.1. Let $f \in C[a,b]$ and $n \ge 1$. Then there exists a best uniform approximation of f in $\mathscr{P}_{n,k}$ which is also in C[a,b].

The purpose of this paper is to investigate further the smoothness properties of best approximating splines in $\mathscr{S}_{n,k}$. Specifically, we shall show that if $n \ge 2$ and $f \in C^1[a,b]$, then f possesses a best approximation in $\mathscr{S}_{n,k}$ (k an arbitrary nonnegative integer) which is also of class $C^1[a,b]$. On the other hand, if n, k, p are integers with $p \ge z, k > n - p \ge 0$, there exists a function $f \in C^{\infty}[a,b]$ which possess no best approximation in $\mathscr{S}_{n,k}$ of continuity class $C^p[a,b]$ (see Theorem 3.8). This negative result is somewhat unexpected, in view of the positive results in the preservation of continuity and differentiability of f.

2. EXISTENCE OF BEST APPROXIMATIONS IN $\mathscr{S}_{n,k}$ which are $C^{1}[a,b]$

This section is devoted to the following analog of Theorem 1.1.

THEOREM 2.1. Let $n \ge 2$ and $k \ge 0$ be integers, and suppose $f \in C^1[a,b]$. Then there exists a best approximation of f in $\mathscr{S}_{n,k}$ which is also in $C^1[a,b]$.

Proof. Suppose $s \in \mathscr{S}_{n,k}$ is a best approximation of f. One exists by Theorem 1.1, and, moreover, we may even assume it is continuous; i.e., it has no knots of multiplicity n + 1. Now, if s also exhibits no knots of multiplicity n, then it is a priori of class $C^1[a, b]$ and there is nothing to prove. Thus, we consider henceforth only the case where s possesses n-tuple knots at some points in [a, b]. Restricting our attention to just one such point $z \in (a, b)$, we may assume that s(t) has the representation (cf. (1.3))

$$s(t) = p(t) + \sum_{i=1}^{n} a_i \phi_i(t; z), \quad p \in \pi_n, \quad a_i \neq 0$$
 (2.1)

for t in a small neighborhood of z. By a trivial change of variables we may also assume z = 0.

To establish the existence of a best approximation of f in $\mathscr{S}_{n,k}$ which is in $C^{1}[a, b]$, we shall replace s locally by a spline

$$\tilde{s}(t) = p(t) + A\phi_n(t; x_1) + \sum_{i=3}^n A_i \phi_i(t; 0) + B\phi_n(t; x_2)$$
(2.2)

with $x_1 < 0 < x_2$ and $x_2 - x_1$ arbitrarily small. We intend to accomplish this in such a way that $s(t) \equiv \tilde{s}(t)$ for $t \notin [x_1, x_2]$ and so that $\tilde{s}(t)$ also provides a best approximation of f in $\mathscr{S}_{n,k}$. The first requirement leads to the equation

$$s(t) - \tilde{s}(t) = \sum_{i=1}^{n} a_i \phi_i(t;0) - A \phi_n(t;x_1) - \sum_{i=3}^{n} A_i \phi_i(t;0) - B \phi_n(t;x_2) \equiv 0, \quad (2.3)$$

for $t \ge x_2$. We now need the following:

LEMMA 2.2. *For* $t \ge \max(0, x)$,

$$\phi_r(t;x) = \phi_r(t;0) + \sum_{i=0}^{r-1} \alpha_i(r;x) \phi_i(t;0),$$

where

$$\alpha_i(r;x) = -\int_0^x w_{i+1}(\xi_{i+1}) \int_x^{\xi_{i+1}} w_{i+2}(\xi_{i+2}) \dots \int_x^{\xi_{r-1}} w_r(\xi_r) d\xi_r \dots d\xi_{i+1},$$

$$i = 0, 1, \dots, r-1.$$

Proof. For $t \ge \max(0, x)$,

$$\phi_r(t;x) = w_0(t) \int_0^t w_1(\xi_1) \int_x^{\xi_1} w_2(\xi_2) \dots \int_x^{\xi_{r-1}} w_r(\xi_r) d\xi_r \dots d\xi_1 - w_0(t) \left[\int_0^x w_1(\xi_1) \int_x^{\xi_1} w_2(\xi_2) \dots \int_x^{\xi_{r-1}} w_r(\xi_r) d\xi_r \dots d\xi_1 \right].$$

Similarly,

$$w_{0}(t) \int_{0}^{t} w_{1}(\xi_{1}) \int_{x}^{\xi_{1}} w_{2}(\xi_{2}) \dots \int_{x}^{\xi_{r-1}} w_{r}(\xi_{r}) d\xi_{r} \dots d\xi_{1}$$

= $w_{0}(t) \int_{0}^{t} w_{1}(\xi_{1}) \int_{0}^{\xi_{1}} w_{2}(\xi_{2}) \dots \int_{x}^{\xi_{r-1}} w_{r}(\xi_{r}) d\xi_{r} \dots d\xi_{1}$
- $w_{0}(t) \int_{0}^{t} w_{1}(\xi_{1}) d\xi_{1} \left[\int_{0}^{x} w_{2}(\xi_{2}) \dots \int_{x}^{\xi_{r-1}} w_{r}(\xi_{r}) d\xi_{r} \dots d\xi_{2} \right].$

Repeating this process clearly leads to the desired expansion, and the proof of Lemma 2.2 is complete.

Substituting from Lemma 2.2 in (2.3), we obtain the equation $(\alpha_n \equiv 1)$

$$\sum_{i=1}^{n} a_{i} \phi_{i}(t;0) - A \sum_{i=0}^{n} \alpha_{i}(n;x_{1}) \phi_{i}(t;0) - \sum_{i=3}^{n} A_{i} \phi_{i}(t;0)$$
$$- B \sum_{i=0}^{n} \alpha_{i}(n;x_{2}) \phi_{i}(t;0) \equiv 0, \quad \text{for } t \ge x_{2}. \quad (2.4)$$

Since the $\{\phi_i(t;0)\}_0^n$ are known to be linearly independent (see e.g., [2]), (2.4) is equivalent to the equations

$$\begin{array}{c|c}
A\alpha_{0} + B\beta_{0} = 0 \\
A\alpha_{1} + B\beta_{1} = a_{1} \\
A\alpha_{2} + B\beta_{2} = a_{2} \\
A_{i} + A\alpha_{i} + B\beta_{i} = a_{i} \quad i = 3, 4, \dots, n,
\end{array}$$
(2.5)

where for convenience we have written $\alpha_i = \alpha_i(n; x_1)$ and $\beta_i = \alpha_i(n; x_2)$, for i = 0, 1, ..., n. We claim this system of equations can be satisfied with $x_1 < 0 < x_2$ and $x_2 - x_1$ arbitrarily small. To see this, we first notice that for $x_1 < 0 < x_2$, α_i and β_i satisfy the easily verifiable properties

$$\alpha_i > 0.$$
 $i = 0, 1, ..., n,$
 $(-1)^{n-i} \beta_i > 0,$ (2.6)

This assures that $\alpha_0\beta_1 - \alpha_1\beta_0 \neq 0$ for all choices of $x_1 < 0 < x_2$. Thus, the first two equations of (2.5) can be solved for any $x_1 < 0 < x_2$ and yield

$$A = \frac{a_1 \beta_0}{\alpha_1 \beta_0 - \alpha_0 \beta_1}, \qquad B = \frac{a_1 \alpha_0}{\alpha_0 \beta_1 - \beta_0 \alpha_1}.$$
 (2.7)

Substituting in the third equation of (2.5), we see that it will be satisfied if and only if

$$I(x_1, x_2) \stackrel{d}{=} \frac{\beta_0 \alpha_2 - \alpha_0 \beta_2}{\alpha_1 \beta_0 - \alpha_0 \beta_1} = \frac{a_2}{a_1}.$$

Straightforward application of L'Hospital's rule shows that α_2/α_0 , α_1/α_0 and α_2/α_1 all approach $+\infty$ as $x_1 \uparrow 0$, while $\beta_2/\beta_0 \to +\infty$, and β_1/β_0 , $\beta_2/\beta_1 \to -\infty$ as $x_2 \downarrow 0$. Hence, for arbitrary $\epsilon > 0$, if $x_2 = \epsilon$, then

$$I(x_1, x_2) = \frac{\beta_0 \frac{\alpha_2}{\alpha_0} - \beta_2}{\beta_0 \frac{\alpha_1}{\alpha_0} - \beta_1} \rightarrow \frac{\alpha_2}{\alpha_1} \rightarrow \infty \quad \text{as } x_1 \uparrow 0.$$

Similarly, if $x_1 = -\epsilon$, then $I(x_1, x_2) \to -\infty$ as $x_2 \downarrow 0$. We conclude that for arbitrarily large K > 0 there exist $-\epsilon \leq \hat{x}_1 < 0 < \hat{x}_2 \leq \epsilon$ such that $I(\hat{x}_1, \epsilon) = K$,

 $I(-\epsilon, \hat{x}_2) = -K$. Since $I(x_1, x_2)$ is continuous in x_1 and x_2 , this implies there exists a point (x_1, x_2) on the line joining $(-\epsilon, \hat{x}_2)$ and (\hat{x}_1, ϵ) , with the property $I(x_1, x_2) = a_2/a_1$. For this choice of $-\epsilon < x_1 < 0 < x_2 < \epsilon$, the first three equations of (2.5) are satisfied. The remaining equations of (2.5) are then solved trivially by choosing $A_i = a_i - A\alpha_i - B\beta_i$, i = 3, 4, ..., n.

We have now succeeded in constructing $\tilde{s}(t)$ which agrees identically with s(t) for $t \notin [x_1, x_2]$. Clearly, $\tilde{s} \in \mathscr{S}_{n, k}$ since the *n*-tuple knot at 0 of *s* has been split into two simple (order 1) knots at x_1 and x_2 and an *n*-2-tuple knot at 0. Moreover, $\tilde{s}(t)$ is now of class C^2 near 0 by construction. To complete the proof of Theorem 2.1, it remains only to verify that \tilde{s} is still a best approximation of f in $\mathscr{S}_{n,k}$.

We consider only the case where a_1 in (2.1) is positive (the case $a_1 < 0$ is analogous). First we notice that

$$s(0) - f(0) < B_{n, k} = \min_{s \in \mathcal{S}_{n, k}} ||f - s||_{\infty}.$$
 (2.8)

Indeed, suppose this is not the case; i.e., $s(0) - f(0) = B_{n,k}$. Then $(s - f)'(0 -) = (p - f)'(0) \ge 0$ and for small $t \ge 0$,

$$[s(t) - f(t)] = [s(0) - f(0)] + [s'(0) - f'(0)]t + 0(t^{2})$$

= $B_{n, k} + [a_{1} \cdot w_{0}(0) w_{1}(0) + p'(0) - f'(0)]t + 0(t^{2})$
> $B_{n, k}$.

(Note: $\phi_i'(t;0)|_0 = 0$ for i > 1 while $\phi_1'(t;0)|_0 = w_0(0)w_1(0)$.) This contradiction implies (2.8). Now, by (2.6) and (2.7),

$$A=\frac{a_1\,\beta_0}{\alpha_1\,\beta_0-\alpha_0\,\beta_1}>0.$$

Since $\tilde{s}(t) - s(t) = A\phi_n(t; x_1)$ for $x_1 \le t \le 0$, it follows that $\tilde{s}(t) > s(t)$ for $x_1 < t \le 0$. Moreover, since $\tilde{s}(t) - s(t)$ is continuous and

$$\tilde{s}(t) - s(t) = -Bw_0(t) \int_{x_2}^t w_1(\xi_1) \dots \int_{x_2}^{\xi_{n-1}} w_n(\xi_n) d\xi_n \dots d\xi_1 \quad \text{for } 0 < t \le x_2,$$

we conclude that $\tilde{s}(t) - s(t) > 0$ for $x_1 < t < x_2$. In addition, for $x_1 \leq t \leq x_2$,

$$|(\tilde{s}-s)(x)| \leq |A|\phi_n(0;x_1) = \frac{a_1\beta_0\phi_n(0;x_1)}{\alpha_1\beta_0 - \alpha_0\beta_1} \rightarrow 0 \quad \text{as } x_2 - x_1 \rightarrow 0,$$

as can be verified by another simple application of L'Hospital's rule. Combining these facts, we see that by taking $x_2 - x_1$ sufficiently small we can assure that $\tilde{s}(t)$ is also a best approximation of f in $\mathcal{S}_{n,k}$.

3. NEGATIVE RESULTS

We begin this section with an example which illustrates that f cannot be expected to possess best approximations in $\mathscr{S}_{n,k}$ for $k > n-p \ge 0$ which are $C^{p}[a,b]$, unless $f \in C^{p}[a,b]$ itself.

EXAMPLE 3.1. Consider approximating $f(t) = \phi_p(t;0)$ by splines of class $\mathscr{S}_{n,k}, k > n-p \ge 0$. The function f is in $\mathscr{S}_{n,n-p+1} \cap C^{p-1}[-1,1]$, but $f \notin C^p[-1,1]$. Clearly, a best approximation of f in $\mathscr{S}_{n,k}$ is f itself, and it is unique. Since $f \notin C^p[-1,1]$, it follows that f cannot possess a best approximation in $\mathscr{S}_{n,k}$ which is $C^p[-1,1]$.

The remainder of our negative results are based on the following example.

EXAMPLE 3.2. For $1 \le p \le n$, let $s(t) = \phi_p(t;0)$ on [-1,1], and construct $f \in C^{\infty}[-1,1]$ such that (f-s)(t) achieves ± 1 with alternating sign at n+2 points, in each of the interiors of the intervals

$$I_i = \left[\frac{i}{4n}, \frac{i+1}{4n}\right], \quad i = -4n, -4n+1, \dots, 4n-1.$$

Consider approximating f by splines in $\mathscr{S}_{n, n-p+1}$. Since f-s alternates at least $(n+2)8n-1 \ge n+2(n-p+1)+1$ times on [-1,1], Theorem 4.2 of [4] assures that s is the best approximation of f in $\mathscr{S}_{n, n-p+1}$.

In addition, since f - s alternates n + 2 times on each of the intervals I_i and s is a *u*-polynomial there, s restricted to I_i must be the unique best approximation to f by (generalized) polynomials in π_n on I_i .

The usefulness of Example 3.2 is embodied in the fact that we can establish a connection between the existence of smooth best approximations to f and the existence of confined splines; that is splines with bounded support. Indeed, suppose f possesses a best approximation $\tilde{s} \in \mathscr{S}_{n, n-p+1}$ which is also $C^p[-1, 1]$. Since $s \notin C^p[-1, 1]$, $s \not\equiv \tilde{s}$. Clearly, there must be intervals among the I_i , both to the left and to the right of [-1/4n, 1/4n], in which no knot of \tilde{s} appears, no matter how the n - p + 1 knots of \tilde{s} are distributed in the 8n intervals I_i . But on intervals I_i where \tilde{s} exhibits no knots, \tilde{s} must reduce to the unique best approximation on I_i of f in π_n (since $||f - \tilde{s}|| = ||f - s||$ by assumption, while s was already seen to be the best approximation in π_n on I_i). Hence we conclude that the spline $\Delta = s - \tilde{s}$ is a confined spline of degree n with at most 2(n - p + 1)knots.

In [1], confined splines with simple knots were discussed. We need the following slight extension of a lemma from [1].

LEMMA 3.3. Let $s(t) \in \mathscr{CP}_{n,m}$ (the class of confined splines of degree n with some m knots, counting multiplicities). Then $s \not\equiv 0$ only if $m \ge n+2$.

Proof. Let the knots of $s \in \mathscr{CP}_{n,m}$ be x_i , with multiplicity m_i , i = 1, 2, ..., r, where $\sum_{i=1}^{r} m_i = m$. Writing multiple knots repeatedly, according to their

multiplicity, we may also write these as $y_1 \leq y_2 \leq \ldots \leq y_m$. Since $s(t) \equiv 0$ for $t \geq y_m$, there exist $y_m < t_1 < t_2 < \ldots < t_m$ with

$$s(t_l) = \sum_{i=1}^r \sum_{j=1}^{m_l} a_{ij} \phi_{n-j+1}(t_l; x_i) = 0, \qquad l = 1, 2, \dots, m.$$

By Lemma 2.1 of [4] (cf. Theorem 1 of [3]), if $m \le n + 1$, the determinant of this system is positive, and hence $a_{ij} = 0$, $i = 1, 2, ..., r, j = 1, 2, ..., m_i$.

An easy consequence of Example 3.2 and Lemma 3.3 is

LEMMA 3.4. A necessary condition in order that every $f \in C^p$ will possess a best approximation in $\mathscr{S}_{n,n-p+1}$ which is also in C^p , is that $n \ge 2p$.

Proof. Consider the function f described in Example 3.2. It can only possess a C^p best approximation in $\mathscr{S}_{n, n-p+1}$ if there exist confined splines $\varDelta \in \mathscr{CS}_{n, 2(n-p+1)}$. This is possible only if $n+2 \leq 2(n-p+1)$, which implies $2p \leq n$.

This lemma shows that the hypotheses in the positive results of Sections 1 and 2 are necessary.

We need some other intermediate results.

LEMMA 3.5. Let $s \in \mathscr{CS}_{n, n+2}$. Then $s \not\equiv 0$ implies $s(t) \neq 0$ for $y_1 < t < y_{n+2}$, where $y_1 \leq \ldots \leq y_{n+2}$ are the knots of s, repeated according to their multiplicity.

Proof. Suppose $s(t_1) = 0$ for some $y_1 < t_1 < y_{n+2}$. Choose $y_{n+2} < t_2 < ... < t_{n+2}$. Then if $x_1 < ... < x_r$ denote the distinct knots of s

$$s(t_l) = \sum_{i=1}^r \sum_{j=1}^{m_l} a_{ij} \phi_{n-j+1}(t_l; x_i) = 0, \qquad l = 1, 2, \dots, n+2.$$

But since $y_i < t_i$, i = 1, 2, ..., n + 2, while $t_1 < y_{n+2}$, Lemma 2.1 of [4] assures that the determinant of this system is non-zero and hence $a_{ij} = 0, i = 1, 2, ..., r$, $j = 1, 2, ..., m_i$.

LEMMA 3.6. There exists no confined spline of the form

$$s(t) = \sum_{i=1}^{r} \sum_{j=1}^{m_i} a_{ij} \phi_{n-j+1}(t; x_i) + \phi_2(t; 0)$$

with $n \ge 4$ and $x_1 < 0 < x_r$, $\sum_{i=1}^r m_i = n - 1$.

Proof. Suppose such an s exists. Since it is in C^1 , Rolle's Theorem assures that

$$s_1(t) = \left[\frac{s(t)}{u_0(t)}\right]' = \sum_{i=1}^r \sum_{j=1}^{m_i} a_{ij} \phi_{n-j}^*(t;x_i) + \phi_1^*(t;0)$$

again vanishes for t outside of $[x_1, x_r]$ and, moreover, $s_1(t_1) = 0$ for some $x_1 < t_1 < x_r$. (The * on the ϕ 's indicates that they are defined as in Section 1 but with respect to a different set of weights; here $\{w_i\}_1^n$ instead of $\{w_i\}_0^n$. The reader who is not thoroughly familiar with TSF's and Tchebycheff systems may think of polynomial splines, in which case, *'s are not needed here. If the subscript *l* of some ϕ_l * is negative, then we take $\phi_l * \equiv 0$.) Thus $s_1(t)$ is again a confined TSF. The analysis now divides into two cases.

Case I. Suppose r = 2. Then in $(x_1, 0)$ and $(0, x_2)$, s_1 has no knots and can be differentiated as often as desired. Using Rolle's Theorem, $s_2 = (s_1/w_1)'$ and thus also $s_3 = (s_2/w_2)'$ will have a zero in (x_1, x_2) , and will vanish for $t \notin [x_1, x_2]$. Since

$$s_3(t) = \sum_{i=1}^r \sum_{j=1}^{m_i} a_{ij} \phi_{n-j-2}^*(t;x_i)$$

for all $t \in (x_1, x_2)$, we see that $s_3(t) \in \mathscr{CS}^*_{n-3, n-1}$ and has a zero also in (x_1, x_2) . By Lemma 3.5, this is impossible unless $s_3 \equiv 0$.

Case II. Suppose $r \ge 3$. Then $m_i \le n-3$; so s_1 is of class C^2 on $(x_1, 0)$ and $(0, x_2)$. Thus it can be differentiated twice in $(x_1, 0)$ and $(0, x_2)$, and this leads again to an $s_3(t)$ which vanishes identically.

In either case, s(t) reduces to $\phi_2(t;0)$ which is clearly not a confined spline, and this contradiction proves the lemma.

THEOREM 3.7. For any $n \ge 3$ there exists a function $f \in C^{\infty}[-1,1]$ such that f has no $C^{2}[-1,1]$ best approximations in $\mathscr{S}_{n,n-1}$.

Proof. Consider the function $f(x) \in C^{\infty}[-1, 1]$ constructed in Example 3.2 (with p = 2), whose best approximation in $\mathscr{S}_{n, n-1}$ is $s = \phi_2(t; 0)$. Clearly $s \in C^1[-1, 1]$, but by the remarks following Example 3.2, f can possess a C^2 best approximation only if there exists a confined spline of the form

$$\Delta = \phi_2(t;0) + g, \qquad g \in \mathscr{S}_{n,n-1}.$$

By Lemma 3.3, this requires $n \ge 4$, since $\Delta \in \mathscr{CS}_{n, 2n-2}$. On the other hand, for $n \ge 4$, Lemma 3.6 shows that there cannot exist confined splines of the form (3.7).

A simple modification of the above method yields the following more complete theorem.

THEOREM 3.8. Let k, n, p be nonnegative integers.

(a) If $k \leq n-p$, then for any $f \in C[a,b]$ every best approximation of f in $\mathscr{S}_{n,k}$ belongs to $C^{p}[a,b]$.

(b) If $p \ge 2$ and $k > n - p \ge 0$, then there exists a function $f \in C^{\infty}[a,b]$ which possesses no $C^{p}[a,b]$ best approximation in $\mathscr{S}_{n,k}$.

Proof. Part (a) follows immediately from the definition of $\mathscr{G}_{n,k}$. For (b) consider $s(t) = \phi_p(t;0) + \sum_{i=1}^{l-1} \phi_n(t;i)$, on the interval [-1,l] where l = k - kn+p. Clearly $s \in \mathscr{G}_{n,k} \cap C^{p-1}[-1,l]$ while $s \notin C^p[-1,l]$. As in Example 3.2 construct $f \in C^{\infty}[-1, l]$ such that f - s alternates n + 2 times on the interiors of each of the intervals $I_j = [jh, (j+1)h]$ for $j = -N, -N+1, \dots, N, l-1$, where h = 1/N, N = k + 3. By the alternation s is a best approximation of f in $\mathcal{S}_{n,k}$. Suppose now that $\tilde{s} \in \mathcal{S}_{n,k}$ belongs to $C^{p}[-1,l]$ and is also a best approximation of f on [-1, l]. No matter how the knots of \tilde{s} are distributed, there exists at least one of the I_i in each of the intervals $[-1 + h, -h], \dots, [l-1+h, l-h]$ with no knot of \tilde{s} . Thus (cf. Example 3.2 ff.), $\Delta = s - \tilde{s}$ is identically zero on these I_i , and Δ breaks into l confined splines with supports on disjoint intervals $\Lambda_i \supset [i-h, i+h], i=0, 1, ..., l-1$. We claim \tilde{s} must have at least one knot in each of the Λ_i , i = 1, 2, ..., l - 1. Indeed, if \tilde{s} has no knot in Λ_i , then s - 1 $\tilde{s} \in \mathscr{CS}_{n,1}$ on Λ_i which implies $s \equiv \tilde{s}$ there in which case it does have a knot at *i*. We conclude that on Λ_0 , Δ is a confined spline of the form $\Delta = \phi_p(t;0) + g$, $g \in \mathscr{S}_{n,n-p+1}$. Applying Rolle's theorem as in Lemma 3.6 it follows that no such confined spline can exist. This contradiction establishes the theorem.

ACKNOWLEDGMENT

My thanks are due to Dr. Zvi Ziegler for several stimulating discussions in connection with the present investigation.

References

- T. N. E. GREVILLE, Spline functions and applications, pp. 1–35, in "Theory and Application of Spline Functions" (T. N. E. Greville, Ed.), Academic Press, New York, 1969.
- 2. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics." Interscience, New York, 1966.
- 3. S. KARLIN AND Z. ZIEGLER, Chebyshevian spline functions. J. SIAM Num. Anal. 3 (1966), 514–543.
- LARRY L. SCHUMAKER, Uniform approximation by Tchebycheffian spline functions, II. Free knots. J. SIAM Num. Anal. 5 (1969), 647–656.
- 5. LARRY L. SCHUMAKER, Approximation by splines, pp. 65–85, *in* "Theory and Application of Spline Functions" (T. N. E, Greville, Ed.), Academic Press, New York, 1969.